SOAL 8.4

SOAL 8.4

Buatlah simulasi rangkaian Multiplexer CMOS 4019


DAFTAR ISI
    5. Video


1. Tujuan [Kembali]
  1. Sebagai media untuk mendalami dan menerapkan konsep serta prinsip kerja dari Decoder melalui     IC74LS147
  2. Untuk memenuhi tugas matakuliah Sistem Digital 
2. Alat dan Bahan [Kembali]
A. Alat

Instrument
1) DC Voltmeter

Generator Daya
1) Baterai
 

2) Power Supply

B. Bahan:

1. Resistor


2. Dioda 1N4001


3. Transistor IC74147


Input Voltage
7V
Operating Free Air Temperature Range
0
°
C to
+
70
°
C
Storage Temperature Range
65
°
C to
+
150
°
C

Komponen Input

1. Switch atau Button

2. SR FF 74HC279




Komponen Output

1. LED

2. Relay


3. Potensiometer



3 Dasar Teori [Kembali] 

a. Transistor
Konfigurasi Transistor
Konfigurasi Common Base adalah konfigurasi yang kaki Basis-nya di-ground-kan dan digunakan bersama untuk INPUT maupun OUTPUT.  Pada Konfigurasi Common Base, sinyal INPUT dimasukan ke Emitor  dan sinyal OUTPUT-nya diambil dari Kolektor, sedangkan kaki Basis-nya di-ground-kan. Oleh karena itu, Common Base juga sering disebut dengan istilah “Grounded Base”. Konfigurasi Common Base ini menghasilkan Penguatan Tegangan antara sinyal INPUT dan sinyal OUTPUT namun tidak menghasilkan penguatan pada arus.

Konfigurasi Common Collector (CC) atau Kolektor Bersama memiliki sifat dan fungsi yang berlawan dengan Common Base (Basis Bersama). Kalau pada Common Base menghasilkan penguatan Tegangan tanpa memperkuat Arus, maka Common Collector ini memiliki fungsi yang dapat menghasilkan Penguatan  Arus namun tidak menghasilkan penguatan Tegangan. Pada Konfigurasi Common Collector, Input diumpankan ke Basis Transistor sedangkan Outputnya diperoleh dari Emitor Transistor sedangkan Kolektor-nya di-ground-kan dan digunakan bersama untuk INPUT maupun OUTPUT. Konfigurasi Kolektor bersama (Common Collector) ini sering disebut juga dengan Pengikut Emitor (Emitter Follower) karena tegangan sinyal Output pada Emitor hampir sama dengan tegangan Input Basis.

Konfigurasi Common Emitter (CE) atau Emitor Bersama merupakan Konfigurasi Transistor yang paling sering digunakan, terutama pada penguat yang membutuhkan penguatan Tegangan dan Arus secara bersamaan. Hal ini dikarenakan Konfigurasi Transistor dengan Common Emitter ini menghasilkan penguatan Tegangan dan Arus antara sinyal Input dan sinyal Output. Common Emitter adalah konfigurasi Transistor dimana kaki Emitor Transistor di-ground-kan dan dipergunakan bersama untuk INPUT dan OUTPUT. Pada Konfigurasi Common Emitter ini, sinyal INPUT dimasukan ke Basis dan sinyal OUTPUT-nya diperoleh dari kaki Kolektor.
Selain digunakan sebagai penguat, transistor biasanya juga dapat digunakan sebagai saklar dalam rangkaian elektronika. Jika ada arus yang cukup besar di kaki basis, transistor akan mencapai titik jenuh. Pada titik jenuh ini transistor mengalirkan arus secara maksimum dari kolektor ke emitor sehingga transistor seolah-olah short pada hubungan kolektor-emitor. Jika arus base sangat kecil maka kolektor dan emitor bagaikan saklar yang terbuka. Pada kondisi ini transistor dalam keadaan cut off sehingga tidak ada arus dari kolektor ke emitor.


Resistor

Resistor merupakan komponen elektronika dasar yang digunakan untuk membatasi jumlah arus yang mengalir dalam satu rangkaian.Sesuai dengan namanya, resistor bersifat resistif dan umumnya terbuat dari bahan karbon. Resistor memiliki simbol seperti gambar dibawah ini :





Simbol Resistor



Resistor mempunyai nilai resistansi (tahanan) tertentu yang dapat memproduksi tegangan listrik di antara kedua pin dimana nilai tegangan terhadap resistansi tersebut berbanding lurus dengan arus yang mengalir, berdasarkan persamaan Hukum OHM :





Dimana V adalah tegangan, I adalah kuat arus, dan R adalah Hambatan.


Di dalam resistor, terdapat ketentuan untuk membaca nilai resistor yang diwakili dengan kode warna dengan ketentuan di bawah ini :








Sebagian besar resistor yang kita lihat memiliki empat pita berwarna . Oleh karena itu ada cara membacanya seperti ketentuan dibawah ini :
1. Dua pita pertama dan kedua menentukan nilai dari resistansi
2. Pita ketiga menentukan faktor pengali, yang akan memberikan nilai resistansi.
3. Dan terakhir, pita keempat menentukan nilai toleransi.


Rumus Resistor:


Seri : Rtotal = R1 + R2 + R3 + ….. + Rn

Dimana :
Rtotal = Total Nilai Resistor
R1 = Resistor ke-1
R2 = Resistor ke-2
R3 = Resistor ke-3
Rn = Resistor ke-n

Paralel: 1/Rtotal = 1/R1 + 1/R2 + 1/R3 + ….. + 1/Rn

Dimana :
Rtotal = Total Nilai Resistor
R1 = Resistor ke-1
R2 = Resistor ke-2
R3 = Resistor ke-3
Rn = Resistor ke-n
Dioda
Dioda adalah komponen elektronika yang terdiri dari dua kutub dan berfungsi menyearahkan arus. Komponen ini terdiri dari penggabungan dua semikonduktor yang masing-masing diberi doping (penambahan material) yang berbeda, dan tambahan material konduktor untuk mengalirkan listrik.Dioda memiliki simbol sebagai berikut :

Gambar Simbol Dioda




Cara Kerja Dioda

Secara sederhana, cara kerja dioda dapat dijelaskan dalam tiga kondisi, yaitu kondisi tanpa tegangan (unbiased), diberikan tegangan positif (forward biased), dan tegangan negatif (reverse biased).
A. Kondisi tanpa tegangan

Pada kondisi tidak diberikan tegangan akan terbentuk suatu perbatasan medan listrik pada daerah P-N junction. Hal ini terjadi diawali dengan proses difusi, yaitu bergeraknya muatan elektro dari sisi n ke sisi p. Elektron-elektron tersebut akan menempati suatu tempat di sisi p yang disebut dengan holes. Pergerakan elektron-elektron tersebut akan meninggalkan ion positif di sisi n, dan holes yang terisi dengan elektron akan menimbulkan ion negatif di sisi p. Ion-ion tidak bergerak ini akan membentuk medan listrik statis yang menjadi penghalang pergerakan elektron pada dioda.
B. Kondisi tegangan positif (Forward-bias)

Pada kondisi ini, bagian anoda disambungkan dengan terminal positif sumber listrik dan bagian katoda disambungkan dengan terminal negatif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Ion-ion negatif akan tertarik ke sisi anoda yang positif, dan ion-ion positif akan tertarik ke sisi katoda yang negatif. Hilangnya penghalang-penghalang tersebut akan memungkinkan pergerakan elektron di dalam dioda, sehingga arus listrik dapat mengalir seperti pada rangkaian tertutup.


C. Kondisi tegangan negatif (Reverse-bias)

Pada kondisi ini, bagian anoda disambungkan dengan terminal negatif sumber listrik dan bagian katoda disambungkan dengan terminal positif. Adanya tegangan eksternal akan mengakibatkan ion-ion yang menjadi penghalang aliran listrik menjadi tertarik ke masing-masing kutub. Pemberian tegangan negatif akan membuat ion-ion negatif tertarik ke sisi katoda (n-type) yang diberi tegangan positif, dan ion-ion positif tertarik ke sisi anoda (p-type) yang diberi tegangan negatif. Pergerakan ion-ion tersebut searah dengan medan listrik statis yang menghalangi pergerakan elektron, sehingga penghalang tersebut akan semakin tebal oleh ion-ion. Akibatnya, listrik tidak dapat mengalir melalui dioda dan rangkaian diibaratkan menjadi rangkaian terbuka.


Rumus




Transistor NPN
Transistor adalah alat semikonduktor yang dipakai sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal. Transistor dapat berfungsi semacam kran listrik, di mana berdasarkan arus inputnya (BJT) atau tegangan inputnya (FET), memungkinkan pengaliran listrik yang sangat akurat dari sirkuit sumber listriknya. Kapasitor NPN memiliki simbol seperti gambar di bawah ini:

Simbol Transistor BC547

Terdapat rumus rumus dalam mencari transistor seperti rumus di bawah ini:


Rumus dari Transitor adalah :

hFE = iC/iB

dimana, iC = perubahan arus kolektor

iB = perubahan arus basis

hFE = arus yang dicapai

Rumus dari Transitor adalah :


Karakteristik Input
Transistor adalah komponen aktif yang menggunakan aliran electron sebagai prinsip kerjanya didalam bahan. Sebuah transistor memiliki tiga daerah doped yaitu daerah emitter, daerah basis dan daerah disebut kolektor. Transistor ada dua jenis yaitu NPN dan PNP. Transistor memiliki dua sambungan: satu antara emitter dan basis, dan yang lain antara kolektor dan basis. Karena itu, sebuah transistor seperti dua buah dioda yang saling bertolak belakang yaitu dioda emitter-basis, atau disingkat dengan emitter dioda dan dioda kolektor-basis, atau disingkat dengan dioda kolektor.
Bagian emitter-basis dari transistor merupakan dioda, maka apabila dioda emitter-basis dibias maju maka kita mengharapkan akan melihat grafik arus terhadap tegangan dioda biasa. Saat tegangan dioda emitter-basis lebih kecil dari potensial barriernya, maka arus basis (Ib) akan kecil. Ketika tegangan dioda melebihi potensial barriernya, arus basis (Ib) akan naik secara cepat.


Karakteristik Output
Sebuah transistor memiliki empat daerah operasi yang berbeda yaitu daerah aktif, daerah saturasi, daerah cutoff, dan daerah breakdown. Jika transistor digunakan sebagai penguat, transistor bekerja pada daerah aktif. Jika transistor digunakan pada rangkaian digital, transistor biasanya beroperasi pada daerah saturasi dan cutoff. Daerah breakdown biasanya dihindari karena resiko transistor menjadi hancur terlalu besar.


Gelombang I/O Transistor


Jenis jenis bias pada transistor


Demultiplexer adalah rangkaian logika kombinasional yang dirancang untuk mengalihkan satu jalur input umum ke salah satu dari beberapa jalur output terpisah. Distributor data, lebih dikenal sebagai Demultiplexer atau "Demux". Decoder adalah kasus khusus demultiplexer tanpa jalur input.


Gambar 1 to 4 demultiplexer





Gambar Representasi rangkaian 2 to 4, 3 to 8, 4 to 16




Jika pada dekoder ada beberapa kombinasi yang tidak digunakan atau 'tidak peduli' di n-bit kode, maka akan ada kurang dari 2n jalur keluaran. Secara umum, jika n dan m berturut-turut jumlah jalur input dan output, maka m kecil sama 2n.

Decoder dapat menghasilkan maksimal 2n kemungkinan minterm dengan kode biner n-bit. Pengoperasian decoder dapat dilihat pada diagram rangkaian logika pada Gambar 8.20. yang mengimplementasikan fungsi dekoder baris 3-ke-8. Memiliki tiga input = A, B dan C dan delapan output = D0, D1, D2, D3, D4, D5, D6 dan D7. Dari tabel kebenaran, karena output logika ‘1’ hanya satu dari delapan output sehingga setiap minterm menghasilkan output tertentu sesuai input. Dalam kasus ini, D0, D1, D2, D3, D4, D5, D6 dan D7 masing-masing mewakili minterm berikut:

8.3.1 Implementing Boolean Functions with Decoders


Dekoder dapat implementasikan pada fungsi Boolean dengan mudah. Dekoder menghasilkan minterm dan gerbang OR eksternal untuk menghasilkan jumlah minterm. Gambar 8.21 menunjukkan diagram logika di mana decoder baris 3-ke-8 digunakan untuk menghasilkan fungsi Boolean yang diberikan dengan persamaan.



Dekoder n-ke-2n dan m gerbang OR eksternal dapat digunakan untuk mengimplementasikan kombinasi rangkaian dengan n input dan m output. Misal pada penerapan empat variabel Fungsi Boolean dengan 12 minterms menggunakan dekoder baris 4-ke-16 dan gerbang OR eksternal. OR gerbang di sini harus menjadi gerbang 12-input. Dalam semua kasus seperti itu, di mana jumlah minterm dalam suatu Fungsi Boolean dengan n variabel lebih besar dari 2n /2 (atau 2n-1 ), fungsi komplementer Boolean akan memiliki lebih sedikit minterm. Dalam hal ini akan lebih baik menggunakan NORing daripada ORing dengan output fungsi boolean.



Gambar 8.20 Diagram logika dari dekoder baris 3-ke-8.


Gambar 8.21 Menerapkan fungsi Boolean dengan dekoder


8.3.2 Sirkuit Decoder Cascading

Langkah-langkah dasar mendesain rangkaian adalah, pertama jika n adalah jumlah jalur input dalam dekoder yang tersedia dan N adalah jumlah jalur input di dekoder yang diinginkan, maka jumlah dekoder individu yang diperlukan untuk membuat dekoder yang diinginkan sirkuit akan menjadi 2N−n. Lalu hubungkan bit yang kurang signifikan dari jalur input dekoder yang diinginkan ke jalur input dari dekoder yang tersedia. Lalu bit sisa dari jalur input dari rangkaian dekoder yang diinginkan digunakan untuk mengaktifkan atau menonaktifkan decoder individu. Kemudian Jalur keluaran dari masing-masing dekoder bersama-sama membentuk jalur keluaran.

4. Percobaan [Kembali]
  1. Siapkan alat dan bahan yang akan digunakan di library proteus, seperti Encoder 4532, Decoder 4511, Logic state, dan Seven Segment.
  2. Rangkailah semua alat dan bahan yang digunakan seperti pada gambar rangkaian percobaan. 
  3. Apabila rangkaian benar, maka kan terliat untuk decoder dan encoder menghasilkan output yang aktif pada kondisi tinggi (1).
Gambar Rangkaian:

Prinsip Kerja
Cmos 4019 merupakan IC multiplexer dimana terdapat banyak input namun hanya melewatkan beberapa input saja. Saat S1 diaktifkan maka input yang akan dilewatkan hanyalah bagian input A saja baik A1 sampai A4. sedangkan Saat S2 diaktifkan yang dilewatkan hanya input B, Baik B1-B4. saat select S1 dan S2 sama sama dimatikan maupun dihidupkan maka tidak ada input yang akan dilewatkan.

5. Video
Berikut video simulasi rangkaian 






Download File HTML klik disini
Download Rangkaian Klik Disini
Download Video klik disini

Datasheet
























Tidak ada komentar:

Posting Komentar

TP-2 Modul 1

Tugas Pendahuluan 2 - Modul 1 [KEMBALI KE MENU SEBELUMNYA] DAFTAR ISI     1. Kondisi     2. Gambar     3. Video Simulasi     4. ...