Aplikasi Aritmatik

 TUGAS APLIKASI

Sistem Kandang Ayam Cerdas



DAFTAR ISI
    5. Video


1. Tujuan [Kembali]
  1. Mengetahui dan memahami aplikasi rangkaian sistem digital 
  2. Memahami dan mengetahui prinsip kerja Sistem Kandang ayam cerdas
  3. Mampu mengerti dam mebuat rangkaian pada Sistem kandang ayam cerdas
2. Alat dan Bahan [Kembali]

Alat
  1. Baterai




        2. DC voltmeter

      ampere meter analog
      Dc Voltmeter

       
      Spesifikasi:








      Pinout:













      3. Power supply/sumber tegangan DC




      Bahan


    1. Resistor

      1.                                
        Spesifikasi

    2. Kapasitor


      Spesifikasi
      .





    3. Potensiometer




      Potensiometer adalah resistor yang resistansinya dapat diatur sesuai kebutuhan, biasa desebut sebagai tahanan geser.

      Spesifikasi:


    4. Operational Amplifier IC LM741



       
      Konfigurasi PIN LM741

      Spesifikasi:
      rendah
            6.   Transistor


    .
                    7.  Relay 
              




    Konfigurasi Pin


     

                8. Dioda
                Dioda fungsi untuk menghantarkan arus listrik ke satu arah tetapi menghambat arus listrik dari arah sebaliknya.
      


                9. LED


                LED berfungsi sebagai indikator air telah penuh dan suhu telah sesuai.




                 11. Saklar

              


    13. Ground




    18. Induktor 





    14. Gerbang Inverter/not

    DataSheet IC 74HC05



    10) Gerbang XOR (IC 7486) 


     

    11) Gerbang OR (IC 7432) 



    12) Gerbang AND (IC 7408) 



    13) Gerbang XNOR (IC 4077)



    14) Gerbang NOR (IC 7402)


    15) Gerbang NAND (IC 7400)


    16) IC 74LS112 


    17) IC 74LS90


    18) IC 7493



    19) IC 74193



    20) IC 74192



    21) IC 74LS47



    22) Seven Segment





            23. Sensor Infrared

        

    12).  Pir Sensor


    Pin Number

    Pin Name

    Description

    1

    Vcc

    Tegangan input adalah +5V untuk aplikasi umumnya. Memiliki jangkauan 4.5V- 12V

    2

    High/Low Ouput (Dout)

    Getaran digital tinggi (3.3V) jika terpicu dan digital rendah (0V) jika diam

    3

    Ground

    Terhubung ke ground rangkaian

    8. Sensor touch

     

    Konfigurasi Pin :

    * Pin 1 : Vcc

    * Pin 2 : Gnd

    * Pin 3 : Vout


    9.Sensor Gas MQ2


    A. Konfigurasi Pin Sensor MQ2

    1. Pin 1 merupakan heater internal yang terhubung dengan ground.

    2.  Pin 2 merupakan tegangan sumber (VC) dimana Vc < 24 VDC.

    3. Pin 3 (VH) digunakan untuk tegangan pada pemanas (heater internal) dimana VH = 5VDC.

    4. Pin 4 merupakan output yang akan menghasilkan tegangan analog.


    B. Spesifikasi 

    • Sensitivitas tinggi dengan area deteksi luas
    • Long life
    • Detection gas : LPG, i-butane, Propane, Methane, Alkohol, Hidrogen
    • Concentration : 200 - 5000 ppm (LPG dan Propane), 300 - 5000 ppm (Butane), 5000 - 20000 ppm (Methane), 300 - 5000 ppm (Hidrogen), 100 - 2000 ppm (Alkohol)
    • Circuit Voltage (Vc) : 5V
    • Heating Voltage (Vh)  : 1.4V-5V
    • Heating Time Th (High) : 60s
    • Heating Time Th (Low) : 90s
    • Load Resistence (RL) : Adjustable
    • Heater resistance (Rh) : 33 ohm
    • Heater Consumption : <800 mW
    • Sensing resistance : 3K ohm - 30K ohm (pada 1000 ppm iso Butane)
    • Preheat time : >24 jam

    C. Grafik respon sensitifitas Sensor Gas MQ2


    10. LM35


    Spesifikasi LM35 :
    • Dikalibrasi Langsung dalam Celcius (Celcius)
    • Faktor Skala Linear + 10-mV / ° C
    • 0,5 ° C Pastikan Akurasi (pada 25 ° C)
    • Dinilai untuk Rentang Penuh −55 ° C hingga 150 ° C
    • Cocok untuk Aplikasi Jarak Jauh
    • Biaya Rendah Karena Pemangkasan Tingkat Wafer
    • Beroperasi Dari 4 V hingga 30 V
    • Pembuangan Arus Kurang dari 60-μA
    • Pemanasan Mandiri Rendah, 0,08 ° C di Udara Diam
    • Hanya Non-Linearitas ± ¼ ° C Tipikal
    • Output Impedansi Rendah, 0,1 Ω untuk Beban 1-mA 
                             
    Konfigurasi LM35:

    C. Grafik Respon


    3 Dasar Teori [Kembali] 

    a. Transistor
    Konfigurasi Transistor
    Konfigurasi Common Base adalah konfigurasi yang kaki Basis-nya di-ground-kan dan digunakan bersama untuk INPUT maupun OUTPUT.  Pada Konfigurasi Common Base, sinyal INPUT dimasukan ke Emitor  dan sinyal OUTPUT-nya diambil dari Kolektor, sedangkan kaki Basis-nya di-ground-kan. Oleh karena itu, Common Base juga sering disebut dengan istilah “Grounded Base”. Konfigurasi Common Base ini menghasilkan Penguatan Tegangan antara sinyal INPUT dan sinyal OUTPUT namun tidak menghasilkan penguatan pada arus.

    Konfigurasi Common Collector (CC) atau Kolektor Bersama memiliki sifat dan fungsi yang berlawan dengan Common Base (Basis Bersama). Kalau pada Common Base menghasilkan penguatan Tegangan tanpa memperkuat Arus, maka Common Collector ini memiliki fungsi yang dapat menghasilkan Penguatan  Arus namun tidak menghasilkan penguatan Tegangan. Pada Konfigurasi Common Collector, Input diumpankan ke Basis Transistor sedangkan Outputnya diperoleh dari Emitor Transistor sedangkan Kolektor-nya di-ground-kan dan digunakan bersama untuk INPUT maupun OUTPUT. Konfigurasi Kolektor bersama (Common Collector) ini sering disebut juga dengan Pengikut Emitor (Emitter Follower) karena tegangan sinyal Output pada Emitor hampir sama dengan tegangan Input Basis.

    Konfigurasi Common Emitter (CE) atau Emitor Bersama merupakan Konfigurasi Transistor yang paling sering digunakan, terutama pada penguat yang membutuhkan penguatan Tegangan dan Arus secara bersamaan. Hal ini dikarenakan Konfigurasi Transistor dengan Common Emitter ini menghasilkan penguatan Tegangan dan Arus antara sinyal Input dan sinyal Output. Common Emitter adalah konfigurasi Transistor dimana kaki Emitor Transistor di-ground-kan dan dipergunakan bersama untuk INPUT dan OUTPUT. Pada Konfigurasi Common Emitter ini, sinyal INPUT dimasukan ke Basis dan sinyal OUTPUT-nya diperoleh dari kaki Kolektor.
    Selain digunakan sebagai penguat, transistor biasanya juga dapat digunakan sebagai saklar dalam rangkaian elektronika. Jika ada arus yang cukup besar di kaki basis, transistor akan mencapai titik jenuh. Pada titik jenuh ini transistor mengalirkan arus secara maksimum dari kolektor ke emitor sehingga transistor seolah-olah short pada hubungan kolektor-emitor. Jika arus base sangat kecil maka kolektor dan emitor bagaikan saklar yang terbuka. Pada kondisi ini transistor dalam keadaan cut off sehingga tidak ada arus dari kolektor ke emitor.

    b. Sensor inframerah/Infra red (IR) 

    detektor atau sensor infra merah adalah komponen elektronika yang dapat mengidentifikasi cahaya infra merah (infra red, IR). Sensor infra merah atau detektor infra merah saat ini ada yang dibuat khusus dalam satu modul dan dinamakan sebagai IR Detector Photomodules. IR Detector Photomodules merupakan sebuah chip detektor inframerah digital yang di dalamnya terdapat fotodiode dan penguat (amplifier).

    Sistem sensor infra merah pada dasarnya menggunakan infra merah sebagai media untuk komunikasi data antara receiver dan transmitter. Sistem akan bekerja jika sinar infra merah yang dipancarkan terhalang oleh suatu benda yang mengakibatkan sinar infra merah tersebut tidak dapat terdeteksi oleh penerima.

     

    d. Resistor
    Cara menghitung nilai resistor:
    Tabel warna

    Contoh :
    Gelang ke 1 : Coklat = 1
    Gelang ke 2 : Hitam = 0
    Gelang ke 3 : Hijau   = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
    Gelang ke 4 : Perak  = Toleransi 10%
    Maka nilai resistor tersebut adalah 10 * 105 = 1.000.000 Ohm atau 1 MOhm dengan toleransi 10%.


    f. Penguat Non-inverting (Op Amp)
    Rangkaian untuk penguat non-inverting adalah seperti yang ditunjukkan gambar (3).


    Penguat tersebut dinamakan penguat non-inverting karena masukan dari penguat tersebut adalah masukan non-inverting dari Op Amp. Tidak seperti penguat inverting, sinyal keluaran penguat jenis ini sefasa dengan sinyal masukannya. Seperti pada rangkaian penguat inverting syarat ideal sebuah penguat adalah tegangan masukan sama dengan 0 dan impedansi masukan tak terhingga. sehingga dari rangkaian tersebut dapat diperoleh rumus penguat adalah sebagai berikut :



    Substitusi persamaan (5) dan (6) ke persamaan (1) sehingga diperoleh
    Rangkaian penguat inverting maupun non-inverting biasanya menggunakan IC Op-Amp 741.

    H. Dioda

    Spesifikasi

    Dioda adalah komponen yang terbuat dari bahan semikonduktor dan mempunyai fungsi untuk menghantarkan arus listrik ke satu arah tetapi menghambat arus listrik dari arah sebaliknya. Sebuah Dioda dibuat dengan menggabungkan dua bahan semi-konduktor tipe-P dan semi-konduktor tipe-N. Ketika dua bahan ini digabungkan, terbentuk lapisan kecil lain di antaranya yang disebut depletion layer. Ini karena lapisan tipe-P memiliki hole berlebih dan lapisan tipe-N memiliki elektron berlebih dan keduanya mencoba berdifusi satu sama lain membentuk penghambat resistansi tinggi antara kedua bahan seperti pada gambar di bawah ini. Lapisan penyumbatan ini disebut depletion layer.
     
    Ketika tegangan positif diterapkan ke Anoda dan tegangan negatif diterapkan ke Katoda, dioda dikatakan dalam kondisi bias maju. Selama keadaan ini tegangan positif akan memompa lebih banyak hole ke daerah tipe-P dan tegangan negatif akan memompa lebih banyak elektron ke daerah tipe-N yang menyebabkan depletion layer hilang sehingga arus mengalir dari Anoda ke Katoda. Tegangan minimum yang diperlukan untuk membuat dioda bias maju disebut forward breakdown voltage.

    Jika tegangan negatif diterapkan ke anoda dan tegangan positif diterapkan ke katoda, dioda dikatakan dalam kondisi bias terbalik. Selama keadaan ini tegangan negatif akan memompa lebih banyak elektron ke material tipe-P dan material tipe-N akan mendapatkan lebih banyak hole dari tegangan positif yang membuat depletion layer lebih besar dan dengan demikian tidak memungkinkan arus mengalir melaluinya. Kondisi ini hanya terjadi pada dioda yang ideal, kenyataannya arus yang kecil tetap dapat mengalir pada bias terbalik dioda.









    Dioda dapat dibagi menjadi beberapa jenis:
    1. Dioda Penyearah (Dioda Biasa atau Dioda Bridge) yang berfungsi sebagai penyearah arus AC ke arus DC.
    2. Dioda Zener yang berfungsi sebagai pengaman rangkaian dan juga sebagai penstabil tegangan.
    3. Dioda LED yang berfungsi sebagai lampu Indikator ataupun lampu penerangan.
    4. Dioda Photo yang berfungsi sebagai sensor cahaya.
    5. Dioda Schottky yang berfungsi sebagai Pengendali.

    Untuk menentukan arus zenner  berlaku persamaan:
    Keterangan:

    Pada grafik terlihat bahwa pada tegangan dibawah ambang batas tegangan mundur (reverse) sebuah dioda akan tembus (menghantar) dan tidak bisa menahan lagi. Batas ini disebut dengan area tegangan breakdown dioda. Kondisi dioda pada area ini adalah tembus atau menghantar dan tidak menghambat. Kemudian pada level tegangan diantara tegangan breakdown dan tegangan forward terdapat area tegangan reverse dan tegangan cut off. Pada area ini kondisi dioda adalah menahan atau tidak mengalirkan arus listrik.


    J. OP-amp
    Detektor non inverting
    Rangkaian detektor non inverting dengan tegangan input Vi berupa
    gelombang segitiga dan tegangan referensi Vref > 0 Volt adalah seperti

    Gambar Rangkaian detektor non inverting
    Dengan menggunakan persamaan (1) maka V= Vdan +Vref = Vsehingga
    bentuk gelombang tegangan output V




    Dengan Vi > 0 maka Vo = +Vsat dan sebaliknya bila Vi < 0 maka Vo = -Vsat.



    Inverting Amplifier






    Rumus:





    NonInverting





    Rumus:





    Komparator





    Rumus:





    Adder





    Rumus:





    Bentuk Gelombang



     6). Relay

        Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Sebagai contoh, dengan Relay yang menggunakan Elektromagnet 5V dan 50 mA mampu menggerakan Armature Relay (yang berfungsi sebagai saklarnya) untuk menghantarkan listrik 220V 2A.

    Simbol di proteus


            7). Ground

      Suatu komponen listrik yang bisa meniadakan beda potensial sebagai pelepasan muatan listrik berlebih pada suatu instalasi listrik dengan cara mengalirkannya ke tanah.

    Simbol di proteus




            8). Power Supply

        Catu daya merupakan suatu Rangkaian yang paling penting bagi sistem elektronika. Power supply atau catu daya adalah suatu alat atau perangkat elektronik yang berfungsi untuk merubah arus AC menjadi arus DC untuk memberi daya suatu perangkat keras lainnya. Sumber AC yaitu sumber tegangan bolak-balik, sedangkan sumber tegangan DC merupakan sumber tegangan searah. Power supply/unit catu daya secara efektif harus mengisolasi rangkaian internal  dari  jaringan  utama,  dan  biasanya  harus  dilengkapi  dengan pembatas  arus  otomatis  atau  pemutus  bila  terjadi  beban  lebih  atau hubung  singkat.  Bila  pada  saat  terjadinya  kesalahan  catu  daya, tegangan  keluaran DC meningkat  di  atas  suatu  nilai  aman maksimum untuk rangkaian internal, maka daya secara otomatis harus diputuskan.

    Simbol di proteus




    10). Motor DC

        Motor DC adalah motor listrik yang memerlukan suplai tegangan arus searah pada kumparan medan untuk diubah menjadi energi gerak mekanik. Kumparan medan pada motor dc disebut stator (bagian yang tidak berputar) dan kumparan jangkar disebut rotor (bagian yang berputar). Motor arus searah, sebagaimana namanya, menggunakan arus langsung yang tidak langsung/directunidirectional.

    Motor DC adalah piranti elektronik yang mengubah energi listrik menjadi energi mekanik berupa gerak rotasi. Pada motor DC terdapat jangkar dengan satu atau lebih kumparan terpisah. Tiap kumparan berujung pada cincin belah (komutator). Dengan adanya insulator antara komutator, cincin belah dapat berperan sebagai saklar kutub ganda (double pole, double throw switch). Motor DC bekerja berdasarkan prinsip gaya Lorentz, yang menyatakan ketika sebuah konduktor beraliran arus diletakkan dalam medan magnet, maka sebuah gaya (yang dikenal dengan gaya Lorentz) akan tercipta secara ortogonal diantara arah medan magnet dan arah aliran arus. Kecepatan putar motor DC (N) dirumuskan dengan Persamaan berikut.


    Simbol motor DC di proteus:

     

        12). LED

        Light Emitting Diode atau sering disingkat dengan LED adalah komponen elektronika yang dapat memancarkan  cahaya monokromatik ketika diberikan tegangan maju. LED merupakan keluarga Dioda yang terbuat dari bahan semikonduktor. Warna-warna Cahaya yang dipancarkan oleh LED tergantung pada jenis bahan semikonduktor yang dipergunakannya. LED juga dapat memancarkan sinar inframerah yang tidak tampak oleh mata seperti yang sering kita jumpai pada Remote Control TV ataupun Remote Control perangkat elektronik lainnya.

    simbol di proteus :

        
        

            14) Gerbang AND


     Gerbang AND ini memerlukan dua atau lebih input untuk menghasilkan satu output. Jika semua atau salah satu inputnya merupakan bilangan biner 0, maka outputnya akan menjadi 0. Sedangkan jika semua input adalah bilangan biner 1, maka outputnya akan menjadi 1.


    Logic gate AND

        15) Gerbang XOR


    Gerbang Ex-OR adalah kombinasi dari gerbang-gerbang logika yang komplek yang digunakan untuk membentuk rangkaian logika aritmatika, komparator dan rangkaian untuk mendeteksi error.

    Gerbang logika Ex-OR disimbolkan seperti pada gambar berikut ini.

    Dalam bentuk aljabar Boolean, logika Ex-OR dapat dituliskan seperti berikut ini.rumus exor :

    Gerbang logika Ex-OR biasanya digunakan untuk membuat rangkaian operasi  aritmatika dan perhitungan khusus Adder dan Half-Adder. Gerbang logika Ex-OR dapat berfungsi sebagai “carry-bit” atau sebagai kontroller inverter, di mana salah satu input melewatkan data biner dan input lainnya berfungsi sebagai pemberi signal kontrol.

    IC gerbang logika Ex-OR antara lain :

    IC TTL seri 74LS86 Quad 2 input Ex-OR

     IC CMOS seri 4030 Quad 2 input EX-OR


        16) Pir Sensor

    Sensor PIR (Passive Infra Red) adalah sensor yang digunakan untuk mendeteksi adanya pancaran sinar infra merah. Sensor PIR bersifat pasif, artinya sensor ini tidak memancarkan sinar infra merah tetapi hanya menerima radiasi sinar infra merah dari luar.


    Sensor ini biasanya digunakan dalam perancangan detektor gerakan berbasis PIR. Karena semua benda memancarkan energi radiasi, sebuah gerakan akan terdeteksi ketika sumber infra merah dengan suhu tertentu (misal: manusia) melewati sumber infra merah yang lain dengan suhu yang berbeda (misal: dinding), maka sensor akan membandingkan pancaran infra merah yang diterima setiap satuan waktu, sehingga jika ada pergerakan maka akan terjadi perubahan pembacaan pada sensor.

    Sensor PIR terdiri dari beberapa bagian yaitu :

    1. Fresnel Lens

    Lensa Fresnel pertama kali digunakan pada tahun 1980an. Digunakan sebagai lensa yang memfokuskan sinar pada lampu mercusuar. Penggunaan paling luas pada lensa Fresnel adalah pada lampu depan mobil, di mana mereka membiarkan berkas parallel secara kasar dari pemantul parabola dibentuk untuk memenuhi persyaratan pola sorotan utama. Namun kini, lensa Fresnel pada mobil telah ditiadakan diganti dengan lensa plain polikarbonat. Lensa Fresnel juga berguna dalam pembuatan film, tidak hanya karena kemampuannya untuk memfokuskan sinar terang, tetapi juga karena intensitas cahaya yang relative konstan diseluruh lebar berkas cahaya.

    2. IR Filter

    IR Filter dimodul sensor PIR ini mampu menyaring panjang gelombang sinar infrared pasif antara 8 sampai 14 mikrometer, sehingga panjang gelombang yang dihasilkan dari tubuh manusia yang berkisar antara 9 sampai 10 mikrometer ini saja yang dapat dideteksi oleh sensor. Sehingga Sensor PIR hanya bereaksi pada tubuh manusia saja.

    3. Pyroelectric Sensor

    Seperti tubuh manusia yang memiliki suhu tubuh kira-kira 32 derajat celcius, yang merupakan suhu panas yang khas yang terdapat pada lingkungan. Pancaran sinar inframerah inilah yang kemudian ditangkap oleh Pyroelectric sensor yang merupakan inti dari sensor PIR ini sehingga menyebabkan Pyroelectic sensor yang terdiri dari galium nitrida, caesium nitrat dan litium tantalate menghasilkan arus listrik. Mengapa bisa menghasilkan arus listrik? Karena pancaran sinar inframerah pasif ini membawa energi panas. Material pyroelectric bereaksi menghasilkan arus listrik karena adanya energi panas yang dibawa oleh infrared pasif tersebut. Prosesnya hampir sama seperti arus listrik yang terbentuk ketika sinar matahari mengenai solar cell.

     *Grafik respon sensor PIR

    1. Respon terhadap arah, jarak, dan kecepatan



    Pada grafik tersebut ; (a) Arah yang berbeda mengasilkan tegangan yang bermuatan berbeda ; (b) Semakin dekat jarak objek terhadap sensor PIR, maka semakin besar tegangan output yang dihasilkan ; (c) Semakin cepat objek bergerak, maka semakin cepat terdeteksi oleh sensor PIR karena infrared yang ditimbulkan dengan lebih cepat oleh objek semakin mudah dideteksi oleh PIR, namun semakin sedikit juga waktu yang dibutuhkan karena sudah diluar jangkauan sensor PIR.

    2. Respon terhadap suhu 


    Dari grafik, didapatkan bahwa suhu juga mempengaruhi seberapa jauh PIR dapat mendeteksi adanya infrared dimana semakin tinggi suhu disekitar maka semakin pendek jarak yang bisa diukur oleh PIR.
                
                17) Lampu

        Sebuah Pilot lamp atau dalam bahasa indonesia lampu pilot merupakan sebuah lampu  LED  yang biasa digunakan sebagai lampu indikator dalam rangkaian sebuah alat atau mesin. Pilot lamp tersebut dapat bekerja sebagai mestinya jika dialiri daya daya AC sebesar 220 VAC dengan toleransi 110 –240 V AC. Warna yang dihasilkan Pilot lamp ini adalah lapu putih.

    simbol lampu di proteus



             18). Kapasitor

        Kapasitor merupakan salah satu jenis elektronika yang mempunyai kemampuan menyimpan arus listrik selama batas waktu tertentu. Kapasitor juga bisa disebut dengan konduktor yang mempunyai salah satu sifat yang pasif dan banyak dipakai dalam membuat rangkaian elektronika dengan kapasitansinya yaitu Farad. Satuan Kapasitor tersebut diambil dari nama penemunya yaitu Michael Faraday (1791 – 1867) yang berasal dari Inggris.Tapi, Farad yaitu satuan yang sangat besar, jadi pada umumnya Kapasitor yang dipakai dalam peralatan Elektronika yaitu satuan Farad yang dikecilkan jadi pikoFarad, NanoFarad dan MicroFarad.

    Konversi Satuan Farad, yaitu sebagai berikut:

    1. 1 Farad = 1.000.000µF (mikro Farad)
    2. 1µF = 1.000nF (nano Farad)
    3. 1µF = 1.000.000pF (piko Farad)
    4. 1nF = 1.000pF (piko Farad)
    Rumus Kapasitor:

    Q = C.V

    Keterangan:

    1. Q = Muatan dengan satuan Coloumb
    2. C = Kapasitas dengan satuan Farad
    3. V = Tegangan dengan satuan Volt
    Rumus Kapasitor Rangkaian Paralel:

    Ctotal = C1 + C2 + C3

    Rumus Kapasitor Rangkaian Seri:

    1/C Total = 1/C1 + 1/C2 + 1/C3

    Simbol kapasitor :

        19). Induktor

    Induktor adalah Komponen elektronika yang terdiri dari susunan lilitan kawat yang membentuk sebuah kumparan.  Induktor memiliki satuan yaitu henry. Namun satuan henry terlalu besar, maka digunakan satuan yang lebih kecil yaitu mikrohenry(mH). Dimana 1 henry sama dengan 1000 milihenry(mH).  
    ebuah Induktor jika diberikan arus listrik maka disekitar induktor tersebut akan timbul medan magnet. Medan magnet tersebut akan disimpan sementara dalam kumparan,sampai adanya perubahan arah Arus listrik

    Ketika dalam sebuah induktor terjadi perubahan arah arus, maka medan magnet yang tersimpan pada induktor tersebut akan bertransformasi menjadi tegangan listrik. Semakin besar medan magnet yang dihasilkan sebuah induktor maka semakin besar pula potensi tegangan yang dihasilkan.  

    Sebuah induktor dapat terdiri dari sebuah lilitan tunggal atau beberapa lilitan dalam satu inti. Jika induktor hanyalah sebuah kumparan tunggal, maka jika induktor tersebut dialiri arus maka setiap lilitan kumparan tersebut akan menginduksi kumparan yang lain sehingga menimbulkan medan magnet. Fenomena ini iistilahkan self induction atau induksi diri.

    Nilai induktansi sebuah induktor dipengaruhi oleh 4 faktor yaitu :
    • Jumlah lilitan, berbangding lurus dengan induktansinya.
    • Diameter kawat Lilitan, berbanding lurus dengan induktansinya
    • Permeabilitas Inti, yaitu bahan inti yang digunaka n seperti ferrit, besi maupun udara
    • Panjang  lilitan induktor, semakin pendek maka induktansinya semakin tinggi.

    Simbol Induktor :



       


       
    • 7 Segment Anoda

       

        Seven segment merupakan bagian-bagian yang digunakan untuk menampilkan angka atau bilangan decimal. Seven segment tersebut terbagi menjadi 7 batang LED yang disusun membentuk angka 8 dengan menggunakan huruf a-f yang disebut DOT MATRIKS. Setiap segment ini terdiri dari 1 atau 2 LED (Light Emitting Dioda). Seven segment bisa menunjukan angka-angka desimal serta beberapa bentuk tertentu melalui gabungan aktif atau tidaknya LED penyususnan dalam seven segment.

        Supaya memudahkan penggunaannnya biasanya memakai sebuah sebuah seven segment driver yang akan mengatur aktif atau tidaknya led-led dalam seven segment sesuai dengan inputan biner yang diberikan. Bentuk tampilan modern disusun sebagai metode 7 bagian atau dot matriks. Jenis tersebut sama dengan namanya, menggunakan sistem tujuh batang led yang dilapis membentuk angka 8 seperti yang ditunjukkan pada gambar di atas. Huruf yang dilihatkan dalam gambar itu ditetapkan untuk menandai bagian-bagian tersebut.

        Dengan menyalakan beberapa segmen yang sesuai, akan dapat diperagakan digit-digit dari 0 sampai 9, dan juga bentuk huruf A sampai F (dimodifikasi). Sinyal input dari switches tidak dapat langsung dikirimkan ke peraga 7 bagian, sehingga harus menggunakan decoder BCD (Binary Code Decimal) ke 7 segmen sebagai antar muka. Decoder tersebut terbentuk  dari pintu-pintu akal yang masukannya berbetuk digit BCD dan keluarannya berupa saluran-saluran untuk mengemudikan tampilan 7 segmen.

    Tabel Pengaktifan Seven Segment Display

    Infrared Sensor

    Sensor Infrared adalah komponen elektronika yang dapat mendeteksi benda ketika cahaya infra merah terhalangi oleh benda. Sensor infared terdiri dari led infrared sebagai pemancar sedangkan pada bagian penerima biasanya terdapat foto transistor, fotodioda, atau inframerah modul yang berfungsi untuk menerima sinar inframerah yang dikirimkan oleh pemancar.

    Grafik respon:

    Grafik menunjukkan hubungan antara resistansi dan jarak potensial untuk sensitivitas rentang antara pemancar dan penerima inframerah. Resistor yang digunakan pada sensor mempengaruhi intensitas cahaya inframerah keluar dari pemancar. Semakin tinggi resistansi yang digunakan, semakin pendek jarak IR Receiver yang mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih rendah dari IR Transmitter. Sementara semakin rendah resistansi yang digunakan, semakin jauh jarak IR Receiver mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih tinggi dari IR Transmitter.


    LDR

    LDR (Light Dependent Resistor) merupakan salah satu komponen resistor yang nilai resistansinya akan berubah-ubah sesuai dengan intensitas cahaya yang mengenai sensor ini. LDR juga dapat digunakan sebagai sensor cahaya. Perlu diketahui bahwa nilai resistansi dari sensor ini sangat bergantung pada intensitas cahaya. Semakin banyak cahaya yang mengenainya, maka akan semakin menurun nilai resistansinya. Sebaliknya jika semakin sedikit cahaya yang mengenai sensor (gelap), maka nilai hambatannya akan menjadi semakin besar sehingga arus listrik yang mengalir akan terhambat.



    Grafik



    Sensor Sound

    Sensor pendeteksi suara bekerja mirip dengan Telinga kita, memiliki diafragma yang mengubah getaran menjadi sinyal. Namun, yang berbeda adalah sensor suara terdiri dari mikrofon kapasitif internal, detektor puncak, dan amplifier (LM386, LM393, dll.) Yang sangat sensitif terhadap suara.

    Dengan komponen-komponen ini, memungkinkan sensor untuk bekerja:

    1. Gelombang suara merambat melalui molekul udara
    2. Gelombang suara seperti itu menyebabkan diafragma di mikrofon bergetar, yang mengakibatkan perubahan kapasitansi
    3. Perubahan kapasitansi kemudian diperkuat dan didigitalkan untuk pemrosesan intensitas suara






    4. Percobaan [Kembali]

    • Prosedur Percobaan
      • Tambahkan alat dan bahan yang dibutuhkan pada library
      • Susun pada schematic capture
      • Hubungkan tiap-tiap komponen seperti gambar dibawah
      • Run pada proteus (arah panah menunjukkan arah arus)
     Gambar Rangkaian Sistem Kandang Ayam Cerdas




     Prinsip kerja

    Pengaplikasian Aritmatika digunakan untuk menghitung jumlah Ayam tersisa didalam kandang. Ayam yang masuk dan keluar akan dihitung lalu dijumlahkan dengan menggunakan full adder subtractor 4 bit. 

    Saat sensor infrared mendeteksi Ayam lewat atau masuk kandang maka infrared akan berlogika 1, sehingga tegangan sebear 5v akan diteruskan menuju voltage follower, output nya akan sama yaitu 5v yang kemudian dapat mengaktifkan transitor sehingga supply tegangan dapat mengalir menuju relay dan mengisi kapasitor. relay aktif sehingga masuk menuju IC counter UP dengan output berupa 4 bit. setiap kali sensor infrared mendeteksi maka perhitungan jumlah ayam akan meningkat, hasil tersebut akan diteruskan menuju IC Aritmatik menuju input Bagian atas 4 bit.

        Pada sensor PIR akan mendeteksi ayam keluar dari kandangnya, saat aktif maka PIR akan meneruskan tegangan sebesar 5V yang membuat relay aktif. Sehingga mengaktifkan counter up, counter up tersebut menghasilkan output 4 bit yang diteruskan menuju IC aritmatik pada inputan pengurang.

    Pada IC aritmatik 4 bit atas akan dikurangkan dengan bagian bawah atau Ayam masuk dikurang ayam keluar, sehingga dapat diketahui jumlah ayam yang tersisa dikandang. Hasilnya juga berupa 4 bit yang dapat dilihat melalui Seven segmen melalui encoder.




    5. Video
    Berikut video simulasi rangkaian 








    Download File HTML klik disini
    Download Rangkaian Klik Disini
    Download Video klik disini
    Download Data Sheet Resistor 220 klik disini
    Download Data Sheet Resistor 10k klik disini
    Download Data Sheet Transistor NPN BC547 klik disini
    Download Datasheet 2N7000 klik disini
    Download Data Sheet LM741 Klik Disini
    Download Data Sheet Relay 12V klik disini
    Download Data Sheet Buzzer klik disini
    Download Datasheet LED klik disini
    Download Data Sheet Motor DC klik disini
    Download Datasheet 7408 (gerbang AND) [klik]
    Download datasheet 74386 XOR [klik]
    Download Datasheet pir sensor [klik]
    Download datasheet sensor sound
    Download datasheet sensor ldr klik
    Download Data Sheet Sensor Infrared klik disini
        Library
    Download Library sensor pir [klik]
    Download File Library Sensor Infrared klik Disini

    Tidak ada komentar:

    Posting Komentar

    TP-2 Modul 1

    Tugas Pendahuluan 2 - Modul 1 [KEMBALI KE MENU SEBELUMNYA] DAFTAR ISI     1. Kondisi     2. Gambar     3. Video Simulasi     4. ...